

Testing Positivity at Muon Colliders

Jiayin Gu

APS April Meeting 2021, Y07 Muon Collider Symposium IV April 20/21, 2021

[arXiv:2011.03055] JG, Lian-Tao Wang, Cen Zhang

- ► Hope for the best!
 - Maybe we will directly discover new physics! (Forget about EFT...)
- Prepare for the worst!
 - No discovery? We can still learn a lot!
- ▶ Precision measurements (Higgs, EW, top, ...)
 - ► The Standard Model Effective Field Theory (SMEFT) is a good framework.
 - Energy vs. Precision ...

- ► Hope for the best!
 - Maybe we will directly discover new physics! (Forget about EFT...)
- Prepare for the worst!
 - ▶ No discovery? We can still learn a lot!
- Precision measurements (Higgs, EW, top, ...)
 - The Standard Model Effective Field Theory (SMEFT) is a good framework.
 - Energy vs. Precision ...
- Can all EFTs be UV completed?
- Dispersion relations of forward elastic amplitudes suggest that certain operator coefficients can only be positive.
 - Assuming the UV physics is consistent with the fundamental principles of QFT (analyticity, locality, unitarity, Lorentz invariance).
 - [hep-th/0602178] Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi, + many papers...

These positivity bounds only exist for certain Dimension-8 (or higher) operators!

$$\frac{d^2}{ds^2}A(ab \to ab)_{t\to 0}|_{s=0} \ge 0.$$

▶ By measuring these dim-8 operator coefficients, we can test whether the underlying new physics is consistent with the fundamental principles of OFT These positivity bounds only exist for certain Dimension-8 (or higher) operators!

$$\frac{\textit{d}^2}{\textit{d} \textit{s}^2} \mathcal{A}(\textit{ab} \rightarrow \textit{ab})_{\textit{t} \rightarrow 0}|_{\textit{s} = 0} \geq 0\,.$$

- By measuring these dim-8 operator coefficients, we can test whether the underlying new physics is consistent with the fundamental principles of QFT.
- Can we do it?
 - It's difficult to probe dim-8 operators!
 - Energy AND Precision! (A linear collider or a muon collider)
 - Or find some special process where dim-8 gives the leading new physics contribution? (main focus of this talk)

The diphoton channel [arXiv:2011.03055] JG, Lian-Tao Wang, Cen Zhang

- $e^+e^- \to \gamma\gamma$ (or $\mu^+\mu^- \to \gamma\gamma$), SM, non-resonant. • Tree level SM: the only helicity configuration is $\mathcal{A}(f^+f^-\gamma^+\gamma^-)$.
- ▶ Leading order contribution: dimension-8 contact interaction. $(f^+f^- \to \bar{e}_L e_L \text{ or } e_R \bar{e}_R)$

$$\mathcal{A}(\mathit{f}^{+}\mathit{f}^{-}\gamma^{+}\gamma^{-})_{\mathrm{SM+d8}} = 2\mathit{e}^{2}\frac{\langle 24\rangle^{2}}{\langle 13\rangle\langle 23\rangle} + \frac{\mathit{a}}{\mathit{v}^{4}}[13][23]\langle 24\rangle^{2}\,.$$

 Operators: Also contributes to ZZ/Zγ final states with opposite helicities.

[1806.09640] Bellazzini, Riva, see also d8 basis in [2005.00008] Shu et al., [2005.00059] Murphy

$$\begin{split} a_L &= \frac{v^4}{\Lambda^4} \left(\cos^2\theta_W \, c_{\ell B}^{(8)} - \cos\theta_W \sin\theta_W \, c_{\ell BW}^{(8)} + \sin^2\theta_W \, c_{\ell W}^{(8)} \right) \,, \\ a_R &= \frac{v^4}{\Lambda^4} \left(\cos^2\theta_W \, c_{\ell B}^{(8)} + \sin^2\theta_W \, c_{\ell W}^{(8)} \right) \,, \end{split}$$

$$\begin{split} \mathcal{O}_{\ell B}^{(8)} &= -\frac{1}{4} (i \bar{\ell}_L \gamma^{\{\rho} D^{\nu\}} \ell_L + \text{h.c.}) B_{\mu\nu} B^{\mu}_{\ \rho} \,, \\ \mathcal{O}_{\ell B}^{(8)} &= -\frac{1}{4} (i \bar{e}_R \gamma^{\{\rho} D^{\nu\}} e_R + \text{h.c.}) B_{\mu\nu} B^{\mu}_{\ \rho} \,, \\ \mathcal{O}_{\ell W}^{(8)} &= -\frac{1}{4} (i \bar{\ell}_L \gamma^{\{\rho} D^{\nu\}} \ell_L + \text{h.c.}) W^{\mu}_{\mu\nu} W^{a\mu}_{\ \rho} \,, \\ \mathcal{O}_{\ell W}^{(8)} &= -\frac{1}{4} (i \bar{e}_R \gamma^{\{\rho} D^{\nu\}} e_R + \text{h.c.}) W^{\mu}_{\mu\nu} W^{a\mu}_{\ \rho} \,, \\ \mathcal{O}_{\ell BW}^{(8)} &= -\frac{1}{4} (i \bar{\ell}_L \sigma^a \gamma^{\{\rho} D^{\nu\}} \ell_L + \text{h.c.}) B_{\mu\nu} W^{a\mu}_{\ \rho} \,, \end{split}$$

All other contributions are either vanishing or suppressed!

The only tree-level d6 contribution are from dipole operators and have different fermion helicities.

- ► SM×d6 at tree level: no interference.
- ▶ $d6^2$: Dipole operators are very well constrained by g-2 and EDM measurements.

All other contributions are either vanishing or suppressed!

- SM×d6 at 1-loop: are either very-well constrained by other measurements with tree-level contributions, or forbidden by selection rules.
 - ▶ O_{3W} is very well constrained by $e^+e^- o WW$ measurements.

- \blacktriangleright Other contributions are constrained by Z-pole measurements or suppressed by the small $y_e.$
- Contribution from the eett 4f operator is forbidden by angular momentum selection rules. ([2001.04481] Shu et al.)

$$e^{t} = 0 \quad \text{(for } e^+e^- \text{ with opposite helicities)}$$

other d8: They have different helicities and do not interfere with SM.

Positivity bounds

► Leading BSM contribution:

$$\mathcal{A}(\bar{\textbf{e}}_{\textbf{L}}\textbf{e}_{\textbf{L}}\gamma^{+}\gamma^{-})_{d8} = \frac{\textbf{a}_{\textbf{L}}}{\textbf{V}^{4}}[13][23]\langle 24\rangle^{2}\,, \qquad \mathcal{A}(\textbf{e}_{\textbf{R}}\bar{\textbf{e}}_{\textbf{R}}\gamma^{+}\gamma^{-})_{d8} = \frac{\textbf{a}_{\textbf{R}}}{\textbf{V}^{4}}[13][23]\langle 24\rangle^{2}\,.$$

Positivity bounds are obtained from the forward elastic amplitude eγ → eγ:

$$\frac{d^2}{ds^2}\mathcal{A}(\boldsymbol{e}\gamma\to\boldsymbol{e}\gamma)|_{t\to 0}\geq 0\,,$$

which implies

$$a_L \ge 0$$
, $a_R \ge 0$.

The diphoton cross section

 Differential cross section (The production polar angle θ is "folded" since the photon polarizations are not measured.)

$$\begin{split} &\frac{d\sigma(e^+e^- \to \gamma\gamma)}{d\cos\theta} \\ &= \frac{(1-P_{e^-})(1+P_{e^+})}{4} \frac{e^4}{4\pi s} \left(\frac{1+c_\theta^2}{1-c_\theta^2} + a_L \frac{s^2(1+c_\theta^2)}{4e^2v^4}\right) \\ &+ \frac{(1+P_{e^-})(1-P_{e^+})}{4} \frac{e^4}{4\pi s} \left(\frac{1+c_\theta^2}{1-c_\theta^2} + a_R \frac{s^2(1+c_\theta^2)}{4e^2v^4}\right) \,, \end{split}$$

- ▶ Positivity bounds: $a_L \ge 0$, $a_R \ge 0$.
- Positivity bound directly on the cross section!

$$\sigma(e^+e^- \to \gamma\gamma) \ge \sigma_{\rm SM}(e^+e^- \to \gamma\gamma)$$
.

▶ The LEP measurement was $\sim 1.5\sigma$ below the SM prediction.

Future projections

- \blacktriangleright χ^2 fit to the binned distribution
 - ▶ Statistics only, 19 bins in $\cos \theta \subset [0, 0.95]$.
 - Agrees reasonably well with LEP result ($\lesssim 10\%$ in the reach on Λ).
- Is beam polarization useful? Yes and no!
 - ▶ One could measure σ_L and σ_R simultaneously.
- High energy still wins!

$$\frac{\Lambda_2}{\Lambda_1} = \left(\frac{E_2}{E_1}\right)^{\frac{3}{4}} \left(\frac{L_2}{L_1}\right)^{\frac{1}{8}} .$$

Combined $\gamma \gamma / Z \gamma / Z Z$ analysis at high energy

- ▶ $Z\gamma$, ZZ processes are more complicated due to the massive Z.
 - ▶ Other helicity states contribute in both SM and BSM (e.g. nTGCs).
 - ▶ In the high energy limit, $A(f^+f^-V^+V^-)$ dominates in SM.
- ▶ In the $\sqrt{s} \gg m_Z$ limit,

$$\sigma(e^+e^- \to ZZ) \ge \sigma_{\rm SM}(e^+e^- \to ZZ)$$
.

- Consider the elastic amplitude of eV → eV.
 - \blacktriangleright V is an arbitrary mixing state of γ and Z,
 - scan over the mixing angle to obtain the strongest bound ($\Delta \sigma \equiv \sigma \sigma_{\rm SM}$),

$$(\Delta \sigma_{Z\gamma})^2 \le 4\Delta \sigma_{\gamma\gamma} \Delta \sigma_{ZZ}.$$

- \triangleright σ_B s only occupy a plane in the 3d parameter space.
 - ▶ 3 operators with ℓ_I , 2 operators with e_B .

$e^+e^ightarrow e^+e^-$ [2009.02212] Fuks, Liu, Zhang, Zhou

Many operators, many positivity bounds...

$$\begin{split} O_1 &= \partial^\alpha(\bar{e}\gamma^\mu e) \partial_\alpha(\bar{e}\gamma_\mu e) \;, & C_1 \leq 0, \\ O_2 &= \partial^\alpha(\bar{e}\gamma^\mu e) \partial_\alpha(\bar{e}\gamma_\mu e) \;, & C_4 + C_5 \leq 0, \\ O_{ee} &= (\bar{e}\gamma^\mu e) \; (\bar{e}\gamma_\mu e) \;, & O_3 = D^\alpha(\bar{e}l) \, D_\alpha(\bar{l}e), & C_5 \leq 0, \\ O_{el} &= (\bar{e}\gamma^\mu e) \; (\bar{l}\gamma_\mu l) \;, & O_4 = \partial^\alpha(\bar{l}l) \, D_\alpha(\bar{l}e), & C_3 \geq 0, \\ O_{ll} &= (\bar{l}\gamma^\mu l) \; (\bar{l}\gamma_\mu l) \;, & O_5 = D^\alpha(\bar{l}\gamma^\mu l) \, \partial_\alpha(\bar{l}\gamma_\mu l) \;, & 2\sqrt{C_1(C_4 + C_5)} \geq C_2, \\ O_{ll} &= (\bar{l}\gamma^\mu l) \; (\bar{l}\gamma_\mu l) \;, & O_5 = D^\alpha(\bar{l}\gamma^\mu r^I l) \, D_\alpha(\bar{l}\gamma_\mu r^I l) \;, & 2\sqrt{C_1(C_4 + C_5)} \geq -(C_2 + C_3). \end{split}$$

Multiple runs with different energies & beam polarizations are very useful! Angular distributions also help.

Conclusion

- $e^+e^- \to \gamma\gamma$ or $\mu^+\mu^- \to \gamma\gamma$ offers a unique opportunity to directly probe dimension-8 operators and their positivity bounds.
- ▶ We can do it at a lepton collider with $\sqrt{s} \sim 240\,\text{GeV}$.
- A muon collider can do much better AND much more because it has energy AND precision!
 - ▶ dilepton, diboson, VBS, ...
 - basically uncharted territory...

Conclusion

- $e^+e^- \to \gamma\gamma$ or $\mu^+\mu^- \to \gamma\gamma$ offers a unique opportunity to directly probe dimension-8 operators and their positivity bounds.
- We can do it at a lepton collider with $\sqrt{s} \sim 240 \, \text{GeV}$.
- A muon collider can do much better AND much more because it has energy AND precision!
 - dilepton, diboson, VBS, ...
 - basically uncharted territory...

"When you have excluded the impossible, whatever remains, however improbable, must be the truth."

- Sherlock Holmes

backup slides

Dispersion relations

► Consider a forward ($t \rightarrow 0$) elastic amplitude ($s + t + u = 4m^2$)

$$\begin{split} \tilde{\mathcal{A}}_{ab}(s) &= \sum_{n} c_{n} (s - \mu^{2})^{n} \,, \\ c_{n} &= \frac{1}{2\pi i} \oint_{s=\mu^{2}} ds \frac{\tilde{\mathcal{A}}_{ab}(s)}{(s - \mu^{2})^{n+1}} \,, \end{split}$$

- Analyticity (Cauchy's theorem applies)
- Locality (poles from tree-level factorization, branch cuts from loops, Froissart Bound)
- ▶ Unitarity (Optical theorem, ${\rm Im} {\cal A} \sim \sigma_{\rm tot}$)
- Lorentz invariance (Crossing symmetry)
- Dispersion relation tells us that

$$c_n = \int_{4m^2}^{\infty} \frac{ds}{\pi} s \sqrt{1 - \frac{4m^2}{s}} \left(\frac{\sigma_{\rm tot}^{ab}}{(s - \mu^2)^{n+1}} + (-1)^n \frac{\sigma_{\rm tot}^{a\bar{b}}}{(s - 4m^2 + \mu^2)^{n+1}} \right) + c_n^{\infty} \; ,$$

Sum rules and positivity bounds

Sum rule:

$$c_n = \int_{4m^2}^{\infty} \frac{ds}{\pi} s \sqrt{1 - \frac{4m^2}{s} \left(\frac{\sigma_{\text{tot}}^{ab}}{(s - \mu^2)^{n+1}} + (-1)^n \frac{\sigma_{\text{tot}}^{a\bar{b}}}{(s - 4m^2 + \mu^2)^{n+1}} \right) + c_n^{\infty}},$$

- ► Froissart bound: $A < \text{const} \cdot s \log^2 s \implies c_n^{\infty} = 0 \text{ for } n > 1.$
- For even n, the two terms with cross sections are both positive, so $c_n > 0$.
- ▶ Consider the limit $m^2 \ll \mu^2 \ll \Lambda^2$ (massless SMEFT).

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &= \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} \mathcal{O}_{j}^{(8)} + \cdots \,. \\ \mathcal{A}_{4} &= g_{[0]} \mathcal{A}_{4}^{[0]} + g_{[-2]} \mathcal{A}_{4}^{[2]} + g_{[-4]} \mathcal{A}_{4}^{[4]} + \cdots \end{split}$$

- ▶ $c_{n=1}$ \Leftrightarrow dimension-6 (no positivity bounds, boundary can be nonzero), $c_{n=2}$ \Leftrightarrow dimension-8 (or d6²) (has positivity bounds),
- See e.g. [2011.00037] Bellazzini, Miró, Rattazzi, Riembau, Riva, [2012.15849] Arkani-Hamed, Huang, Huang for more general positivity bounds also for non-forward amplitudes.

Probing positivity bounds on dimension-8 operators

- ► The dimension-8 contribution has a large energy enhancement ($\sim E^4/\Lambda^4$)!
- It is difficult for LHC to probe these bounds.
 - Low statistics in the high energy bins.
 - Example: Vector boson scattering.
 - $\Lambda \lesssim \sqrt{s}$, the EFT expansion breaks down!
- Can we separate the dim-8 and dim-6 effects?
 - ▶ Precision measurements at several different √s?

(A very high energy lepton collider?)

Or find some special process where dim-8 gives the leading new physics contribution?

Collider scenarios

$\int \mathcal{L} dt \ [\mathrm{ab}^{-1}]$					
unpolarized	91 GeV	161 GeV	240 GeV	365 GeV	
CEPC	8	2.6	5.6		
FCC-ee	150	10	5	1.5	
ILC	250 GeV	350 GeV	500 GeV		
(-0.8, +0.3)	0.9	0.135	1.6		
(+0.8, -0.3)	0.9	0.045	1.6		
$(\pm 0.8, \pm 0.3)$	0.1	0.01	0.4		
CLIC	380 GeV	1.5 TeV	3 TeV		
(-0.8, 0)	0.5	2	4		
(+0.8, 0)	0.5	0.5	1		
muon collider	10 TeV	30 TeV			
unpolarized	10	90			

Combined $\gamma \gamma / Z \gamma / Z Z$ analysis at high energy

- ▶ Global fit of the $\gamma \gamma / Z \gamma / Z Z$ processes in the high energy limit.
- No beam polarizations ⇒ flat directions.
- ► Flat directions are lifted once the positivity bounds are imposed!

What if positivity bound is violated?

- Statistical fluctuation, systematic error, ...
 - Even 5σ can go away in the diphoton channel.
- ► EFT is not valid?
 - ► An *s*-channel light ($m \lesssim \sqrt{s}$) spin-2 particle?
 - ▶ Very well probed by resonance searches $e^+e^- \to X\gamma/XZ$, $X \to \gamma\gamma/e^+e^-$. (see *e.g.* ILC 750 GeV study [1607.03829])
 - ▶ By measuring $e^+e^- \to \gamma\gamma$ at several energies (e.g. Z-pole and 240 GeV) we can check whether the deviation comes from d8 operators ($\sim s^2$) or something else.
- Can QFT really break down at the TeV scale?
 - Example from history: Nobody expected classical physics to break down, nobody expected parity to be violated, ...

What if positivity bound is violated?

- Statistical fluctuation, systematic error, ...
 - ightharpoonup Even 5σ can go away in the diphoton channel.
- ► EFT is not valid?
 - ► An *s*-channel light ($m \lesssim \sqrt{s}$) spin-2 particle?
 - ▶ Very well probed by resonance searches $e^+e^- \to X\gamma/XZ$, $X \to \gamma\gamma/e^+e^-$. (see *e.g.* ILC 750 GeV study [1607.03829])
 - ▶ By measuring $e^+e^- \to \gamma\gamma$ at several energies (e.g. Z-pole and 240 GeV) we can check whether the deviation comes from d8 operators ($\sim s^2$) or something else.
- Can QFT really break down at the TeV scale?
 - Example from history: Nobody expected classical physics to break down, nobody expected parity to be violated, ...

It's important to do the experiment!

Sum rules for dimension-6 operators [arXiv:2008.07551] JG, L.-T. Wang

Use helicity amplitudes to classify the sum rules.

elastic 4-point amplitudes	spinor form of $\mathcal{A}_4^{[2]}$ (d6 operators)	spinor form of $\mathcal{A}_4^{[4]}$ (d8 or d6 ²)
$\frac{\mathcal{A}(12\to3_{=1}4_{=2})}{\phi_1\phi_2\phi_1^*\phi_2^*}$	1	,
$\psi_1\psi_2\psi_1\psi_2 \ \psi^-\phi\psi^+\phi^*$	$\frac{s_{ij}}{\langle 12 \rangle [23]}$	$\begin{array}{c} s_{ij} \times s_{kl} \\ \langle 12 \rangle [23] \times s_{ij} \end{array}$
$\psi_1^-\psi_2^-\psi_1^+\psi_2^+$	(12)[34]	$\langle 12 \rangle [34] \times s_{ij}$
$V^-\phi V^+\phi^*$	X	$(12)^2[23]^2$
$V^-\psi^-V^+\psi^+$	X	$(12)^2[23][34]$
$V_1^-V_2^-V_1^+V_2^+$	X	$\left[\langle 12 \rangle^2 [34]^2, \langle 12 \rangle^2 [34]^2 \frac{t-u}{s} \right]$

- Tree level dimension-6: only scalar-scalar, scalar-fermion and fermion-fermion amplitudes!
- Forward limit:

$$ilde{\mathcal{A}}_4^{[2]} \equiv \mathcal{A}_4^{[2]}|_{t o 0} \propto \mathcal{S}\,, \qquad \quad ilde{\mathcal{A}}_4^{[4]} \equiv \mathcal{A}_4^{[4]}|_{t o 0} \propto \mathcal{S}^2\,.$$

scalar-scalar

$$\begin{split} \frac{c_H + 3c_T}{\Lambda^2} &= \frac{d\bar{\mathcal{A}}_{\phi^+\phi^-}}{ds} \bigg|_{s=0} = \int_0^\infty \frac{ds}{\pi s} \left(\sigma_{\text{tot}}^{\phi^+\phi^-} - \sigma_{\text{tot}}^{\phi^+\phi^+}\right) + c_\infty \,, \\ &- \frac{2c_T}{\Lambda^2} &= \frac{d\bar{\mathcal{A}}_{\phi^+\phi^0}}{ds} \bigg|_{s=0} = \int_0^\infty \frac{ds}{\pi s} \left(\sigma_{\text{tot}}^{\phi^+\phi^0} - \sigma_{\text{tot}}^{\phi^+\phi^0}\right) + c_\infty \,, \end{split}$$

▶ fermion-fermion

only showing $\frac{c_{\theta\theta}}{\Lambda^2}(\overline{e_R}\gamma_{\mu}e_R)(\overline{e_R}\gamma^{\mu}e_R)$, 20 in total for 1 generation

$$-\left.\frac{2c_{ee}}{\Lambda^2} = \left.\frac{d\tilde{\mathcal{A}}_{e_R\,\overline{e_R}}}{ds}\right|_{s=0} = \int_0^\infty \frac{ds}{\pi s} \left(\sigma_{\rm tot}^{e_R\,\overline{e_R}} - \sigma_{\rm tot}^{e_R\,e_R}\right) + c_\infty\,.$$

$\mathcal{O}_H = rac{1}{2} (\partial_\mu H ^2)^2$	$\mathcal{O}_T = rac{1}{2} (H^\dagger \overleftrightarrow{D_\mu} H)^2$
$\mathcal{O}_{H\ell} = i H^{\dagger} \overrightarrow{D}_{\mu} H \overline{\ell}_L \gamma^{\mu} \ell_L \ \mathcal{O}_{H\ell}' = i H^{\dagger} \sigma^a \overrightarrow{D}_{\mu} H \overline{\ell}_L \sigma^a \gamma^{\mu} \ell_L$	$\mathcal{O}_{He} = iH^{\dagger} \overleftrightarrow{D}_{\mu} H \bar{e}_R \gamma^{\mu} e_R$
$\mathcal{O}_{Hq} = iH^{\dagger} \overrightarrow{D}_{\mu} H \bar{q}_{L} \gamma^{\mu} q_{L}$ $\mathcal{O}'_{Hq} = iH^{\dagger} \sigma^{a} \overrightarrow{D}_{\mu} H \bar{q}_{L} \sigma^{a} \gamma^{\mu} q_{L}$	$\mathcal{O}_{Hu} = iH^{\dagger} \overrightarrow{D_{\mu}} H \bar{u}_R \gamma^{\mu} u_R$ $\mathcal{O}_{Hd} = iH^{\dagger} \overrightarrow{D_{\mu}} H \bar{d}_R \gamma^{\mu} d_R$
$\mathcal{O}'_{Hq} = iH^{\dagger}\sigma^{a}D'_{\mu}H\bar{q}_{L}\sigma^{a}\gamma^{\mu}q_{L}$	$O_{Hd} = iH^{\dagger}D'_{\mu}H\bar{d}_R\gamma^{\mu}d_R$

scalar-fermion (also the same for leptons)

$$\begin{split} \frac{2(c_{Hq}-c'_{Hq})}{\Lambda^2} &= \frac{d\bar{A}_{\mathrm{u}_L\,\phi^0}}{ds}\bigg|_{s=0} = \int_0^\infty \frac{ds}{\pi s} \left(\sigma_{\mathrm{tot}}^{u_L\,\phi^0} - \sigma_{\mathrm{tot}}^{u_L\,\phi^0*}\right) + c_\infty\,,\\ \frac{2c_{Hu}}{\Lambda^2} &= \frac{d\bar{A}_{\mathrm{u}_R\,\phi^0}}{ds}\bigg|_{s=0} = \int_0^\infty \frac{ds}{\pi s} \left(\sigma_{\mathrm{tot}}^{u_R\,\phi^0} - \sigma_{\mathrm{tot}}^{u_R\,\phi^0*}\right) + c_\infty\,,\\ \frac{2(c_{Hq}+c'_{Hq})}{\Lambda^2} &= \frac{d\bar{A}_{\mathrm{d}_L\,\phi^0}}{ds}\bigg|_{s=0} = \int_0^\infty \frac{ds}{\pi s} \left(\sigma_{\mathrm{tot}}^{d_L\,\phi^0} - \sigma_{\mathrm{tot}}^{d_L\,\phi^0*}\right) + c_\infty\,,\\ \frac{2c_{Hd}}{\Lambda^2} &= \frac{d\bar{A}_{\mathrm{d}_R\,\phi^0}}{ds}\bigg|_{s=0} = \int_0^\infty \frac{ds}{\pi s} \left(\sigma_{\mathrm{tot}}^{d_R\,\phi^0} - \sigma_{\mathrm{tot}}^{d_R\,\phi^0*}\right) + c_\infty\,, \end{split}$$

Example: Zbb Custodial symmetry

▶ How the $Zb_L\bar{b}_L$ couplings is related to heavy quarks.

$$\left.\frac{4\,\delta g_{Lb}}{\mathit{v}^2} = -\frac{2(\mathit{c}_{Hq} + \mathit{c}_{Hq}')}{\Lambda^2} = \left.\frac{\mathit{d}\tilde{\mathcal{A}}_{\mathit{l}_L\,\phi^-}}{\mathit{d}\mathit{s}}\right|_{\mathit{s}=-0} = \int_0^\infty \frac{\mathit{d}\mathit{s}}{\pi \mathit{s}} \left(\sigma^{\mathit{l}_L\,\phi^- \to \mathit{F}^{-\frac{1}{3}}} - \sigma^{\mathit{l}_L\,\phi^+ \to \mathit{F}^{\frac{5}{3}}}\right) + \mathit{c}_\infty \;,$$

► We can impose some symmetry to ensure the cancellation of the two cross section terms. (Zbb̄ custodial symmetry, [hep-ph/0605341] Agashe et al.)

